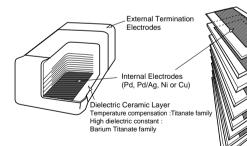
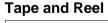

Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications, including the general-purpose CM series, the high-voltage CF series, the low profile CT series, and the DN series for automotive uses.

Features

- We have factories worldwide in order to supply our global customer bases quickly and efficiently and to maintain our reputation as one of the highest-volume producers in the industry.
- All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes.
- By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications.
- Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and super quality.
- Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements.


Nickel Barrier Termination Products


Ag or Cu or CuNi

Ni Plating

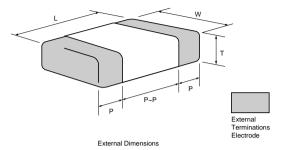
Sn Plating or Sn/Pb Plating

Structure

Bulk Cassette

Please contact your local AVX, Kyocera sales office or distributor for specifications not covered in this catalog.

Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact an sales representative to confirm compatibility with your application.


Kyocera Ceramic Chip Capacitors are available for different applications as classified below:

Series	Dieletric Options	Typical Applications	Features	Terminations	Available Size (EIA)
СМ	C0G (NP0) X5R X7R X6S X7S Y5V NTC*	General Purpose	Wide Cap Range	Nickel Barrier	0201, 0402, 0603 0805, 1206, 1210 1812, 2211, 2220
CF	COG (NP0) X7R	High Voltage & Power Circuits	High Voltage 250VDC, 630VDC 1000VDC, 2000VDC 3000VDC, 4000VDC	Nickel Barrier	0805, 1206, 1210 1812, 2208, 1808 2220
СТ	C0G (NP0) X5R X7R Y5V	PLCC (Decoupling)	Low Profile	Nickel Barrier	0402, 0603, 0805 1206, 1210
*DN/DR	C0G (NP0) U (750) X7R	Automotive	Thermal shock Resistivity High Reliability	Nickel Barrier	0603, 0805, 1206
CU	C0G (NP0)	RF Circuit	Low ESR	Nickel Barrier	0402, 0603
СА	C0G (NP0) X5R	Digital Signal Pass line	Reduction in Placing Costs	Nickel Barrier	0405, 0508, 0612

* NTC: Negative Temperature coefficient types are available on request.

* DN Series: Silver Palladium termination is available on request.
 * CA Series: X7R, Y5V are available on request.

Dimensions

Tape & Reel

Size	EIA CODE	EIAJ CODE			Dimensi	ions (mm)		
0120		LING CODE	L	w	P min	P max	P to P min	T max
03	0201	0603	0.6±0.03	0.3±0.03	0.10	0.20	0.20	0.33
05	0402	1005	1.0±0.05	0.5±0.05	0.15	0.35	0.30	0.55
105	0603	1608	1.6±0.10 0.8±0.10 0.20 0		0.60	0.50	0.90	
21	0805	2012	2.0±0.10	1.25±0.10	0.20	0.75	0.70	1.35
316	1206	3216	3.2±0.20	1.60±0.15	0.30	0.85	1.40	1.75
32	1210	3225	3.2±0.20	2.50±0.20	0.30	1.00	1.40	2.70
42	1808	4520	4.5±0.20	2.00±0.20	0.15	0.85	2.60	2.20
43	1812	4532	4.5±0.30	3.20±0.20	0.30	1.10	2.00	3.0
52	2208	5720	5.7±0.40	2.00±0.20	0.15	0.85	4.20	2.20
53	2211	5728	5.7±0.40	2.80±0.20	0.15	0.85	4.20	2.80
55	2220	5750	5.7±0.40	5.00±0.40	0.30	1.40	2.50	2.70

CT21, CT316 : (L) 3.2±0.2mm and (W)1.6±0.2mm
T (Thickness) depends on capacitance value. Standard thickness is shown on the appropriate product pages.
DR series 105, 21 size (L)(W)(T) Tolerance ±0.15mm
CA series (please refer page 19)

Bulk Cassette

Size		FIALCODE		w	т	F	2	P to P
Size	EIA CODE	EIAJ CODE	L	vv	l	min	max	min
05	0402	1005 1.0±0.05		0.5±0.05	0.5±0.05	0.15	0.35	0.30
105	0603	1608	1.6±0.07	0.8±0.07	0.8±0.07	0.20	0.60	0.50
21	0805	2012	2.0±0.1	1.25±0.1	0.6±0.1/1.25±0.1	0.20	0.75	0.70

KYOCERA PART NUMBER: CM 21 X7R 104 K 50 A T III	
CM = General Purpose CA = Capacitor Arrays CF = High Voltage CU = Low ESR CT = Low Profile DN/DR = Automotive	
SIZEEIA (EIAJ)SIZEEIA (EIAJ)SIZEEIA (EIAJ) $03 = 0201 (0603)$ $21 = 0805 (2012)$ $52 = 2208 (5720)$ $05 = 0402 (1005)$ $316 = 1206 (3216)$ $53 = 5728 (2211)$ $105 = 0603 (1608)$ $32 = 1210 (3225)$ $55 = 2220 (5750)$ F12 = 0508 (1220)/4cap $42 = 1808 (4520)$ D11 = 0405 (1012)/2capF13 = 0612 (1632)/4cap $43 = 1812 (4532)$ D12 = 0508 (1220)/2cap	
CODEEIA CODECG=COG (NPO)X7S=X7SX5R=X5RX6S=X6S (Option)X7R=X7RY5V=Y5VNegative dielectric types are available on request.	
Capacitance expressed in pF. 2 significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, eg. 100000pF = 104	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
A = Nickel Barrier C = Silver (*option) B = Silver Palladium (*option)	
B = BulkL = 13" Reel Taping & 4mm Cavity pitchC = Bulk CassetteH = 7" Reel Taping & 2mm Cavity pitchT = 7" Reel Taping & 4mm Cavity pitchN = 13" Reel Taping & 2mm Cavity pitch	
OPTION	J

Thickness max value is indicated in CT series EX. 125 \rightarrow 1.25mm max 095 \rightarrow 0.95mm max

High Dielectric Constant

EIA Dielectric	Temperature Range	∆Cmax
X5R	–55 to 85°C	±15%
X7R	–55 to 125°C	±15%
X7S	–55 to 125°C	100%
X6S	–55 to 105°C	±22%
Y5V	–30 to 85°C	-82 to +22%

Temperature Compensation Type

Electric Code Value (pF)	1B/C0G	Р∆ N150	R∆ N220	S∆ N330	Т ∆ N470	U∆ N750	SL +350 to -1000
0.5-2.7	СК	PK	RK	SK	ТК	UK	SL
3.0-3.9	CJ	PJ	RJ	SJ	ТJ	UJ	SL
4.0-9.0	СН	PH	RH	SH	ТН	UJ	SL
≥10	CG	PH	RH	SH	тн	UJ	SL

 $\mathsf{K}=\pm250ppm/^{\circ}\mathsf{C},\ \mathsf{J}=\pm120ppm/^{\circ}\mathsf{C},\ \mathsf{H}=\pm60ppm/^{\circ}\mathsf{C},\ \mathsf{G}=\pm30ppm/^{\circ}\mathsf{C}$

e.g. CG = 0 ± 30 ppm/°C, PH = -150 ± 60 ppm/°C

Note: All parts will be marked as "CG" but will conform to the above table.

Available Tolerances

Dielectric materials, capacitance values and tolerances are available in the following combinations only:

EIA Dielectric	Standard Tolerance	Capacitance
	^{*4} A=±0.05pF	≤0.5pF
	^{*4} B=±0.1pF	≤5pF
	C=±0.25pF	
COG	D=±0.50pF	*² <10pF
NTC *1	F=±1pF	
	G=±2%	> 40 - F
	J=±5%	≥10pF
	K=±10%	E12 Series
X5R	*3 K=±10%	FO Ouries
X6R X7R	M=±20%	E6 Series
Y5V	Z=-20% to +80%	E3 Series

Note:

*1 NTC : Negative Temperature Compensation types are available on request as shown on product pages.

*2 Nominal values below 10pF are available in the standard values of 0.5pF, 1.0pF, 1.5pF, 2.0pF, 3.0pF, 4.0pF, 5.0pF, 6.0pF, 7.0pF, 8.0pF, 9.0pF, 10pF.

*3 J = \pm 5% for X7R(X5R) is available on request.

*4 option

E Standard Number

E3	E6	E12	E24 (C	ption)		
	1.0	1.0	1.0	1.1		
1.0	1.0	1.2	1.2	1.3		
1.0	1.5	1.5	1.5	1.6		
	1.5	1.8	1.8	2.0		
	2.2	2.2	2.2	2.4		
0.0	2.2	2.7	2.7	3.0		
2.2	2.2	3.3	3.3	3.6		
	3.3	3.9	3.9	4.3		
	47	4.7	4.7	5.1		
4 7	4.7	5.6	5.6	6.2		
4.7	6 9	6.8	6.8	7.5		
	6.8	8.2	8.2	9.1		

This standard type is ideal for use in a wide range of applications, from

Features

We offer a diverse product line ranging from ultra-compact (0.6×0.3 mm) to large (5.7×5.0 mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications.

Temperature Compensation Dielectrics

CM03 (0603) CM05 (1005) CM105 (1608) CM21 (2012) CM316 (3216) **CM32** Size (mm) (3225) Temperature UΔ SL UΔ SL $\mathbf{C}\Delta$ CΔ $\mathbf{C}\Delta$ $\mathbf{C}\Delta$ $\mathbf{C}\Delta$ $\mathbf{C}\Delta$ Characteristics Rated Voltage (VDC) 25 25 100 10 16 25 16 25 16 25 50 50 50 50 100 16 50 25 50 100 50 Capacitance (pF) R20 R50 1R0 1R5 0.2 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 A С в в в <u>100</u> 120 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 А 101 121 D в 270 330 390 470 560 680 820 1000 1200 1500 1500 1800 2200 2700 3300 3900 D С D D D D 102 122 Е D Е E Е G 4700 5600 6800 Е Е H G 8200 8200 10000 12000 15000 F Н 103 123 8000

Application

commercial to industrial equipment.

Thickness and standard package quantity

_

Taping(330 dia reel)

Size	03	05	105	*105					21, 316, 32					
Thickness	Α	В	С	С	D	Е	F	G	Н		J	Κ	L	
(mm)	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	1.15±0.1	1.25±0.1	1.4max	1.6max	1.6±0.15	2.0±0.2	2.5±0.2	
Taping(180 dia reel)	15kp(P8)	10kp(P8)	4kp(P8)	8kp(P8)	4kp(P8)	4kp(P8)	3kp(E8)	3kp(E8)	3kp(E8)	2.5kp(E8)	2.5kp(E8)	2kp(E8)	1kp(E8)	
Taping(330 dia reel)		50kp(P8)	10kp(P8)	20kp(P8)	10kp(P8)	10kp(P8)	10kp(E8)	10kp(E8)	10kp(E8)	5kp(E8)	5kp(E8)	5kp(E8)		
Size		43	, 55		Note : P8 = 8mm width paper tape E8 = 8mm width plastic tape									
Thickness	J	Κ	L	Μ	E1:	2 = 12mm wid	Ith plastic tape							
(mm)	1.6±0.15	2.0±0.2	2.5±0.2	2.8±0.2	2.8±0.2 * Carrier tape 2mm pitch from one capacitor to another.									
Taping(178 dia reel)	1kp(E12)	1kp(E12)	0.5kp(E12)	0.5kp(E12)										

X5R Dielectric

Siz	e (mm)		CM03 (0603))			CN (10	105 05)						CM10 (1608	5)					CN (20	121 12)		
	Voltage (VDC) citance (pF)	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50
101	100																						
151	150 220 330			А																			
102	470 680 1000									в													
<u>102</u> 152	1500 2200 3300		Α														С						
103	4700 6800 10000	Α							в														
<u>103</u> 153	15000 22000 33000															С							D E
104	47000 68000 100000							В															G
154	150000 220000 330000				P 7773	В	* *								С							G	
105	470000 680000 1000000				B								С	С							* G		
<u>105</u> 155	1500000 2200000 3300000										*1 *1 *1	*1							_{*1} G	G			
106	4700000 6800000 10000000										*1							*1 *1 *2	*1				

Siz	ze (mm)				1316 216)						132 25)			CM43 (4532)				
	I Voltage (VDC) acitance (pF)	6.3	6.3 10 16 25 35 50						10	16	25	35	50	6.3	10	25	50	
104	100000																	
	220000						F											
105	470000 1000000					F						н	H K					
	2200000											K					L	
106	4700000 10000000	*	* J	*2 J *2	*2				К							L		
107	22000000 47000000 100000000	*2						*2	L					* L *2 M	L			

* Non standard specification, please contact us for further information.

*1 Length(L, T) tolerance ±0.15 *2 Length(L, T) tolerance ±0.2

X7R, X7S Dielectric

Size	e (mm)	CM03 (0201)		CM (04	105 02)				CM (06	105 03)			CM21 (0805)					
	/oltage (VDC) itance (pF)	16	6.3	16	25	50	6.3	10	16	25	50	100	4	10	16	25	50	100
101 151	100 150 220 330	A																
<u>102</u> 152	470 680 <u>1000</u> 1500					в					с	с						
	2200 3300 4700 6800 10000				В													D
<u>103</u> 153	15000 22000 33000		*	В						с							 	G
<u>104</u> 154	47000 68000 100000 150000		* * B					с	С							G	G	
	220000 330000 470000 680000						* *	0							G			
<u>105</u> 155	1000000 1500000 2200000						*						* * G	G				
	3300000 4700000												*					

Siz	e (mm)				316 06)						132 :10)				CM55 (2220)		
<u> </u>	Voltage (VDC) citance (pF)	6.3	10	16	25	50	100	6.3	10	16	25	50	100	16	50	100	100
103	10000																
104	22000 47000 100000					E	F						Н				
105	220000 470000 1000000			F	F J	F					H	H K	K L		J	L	
106	10000000	*2 J	* J							L	K						
	22000000							*									

* Only X7S available *2 Length(W, T) Tolerance ±0.2, X7S available

Y5V Dielectric

(mm)

Taping(178 dia reel)

Taping(330 dia reel)

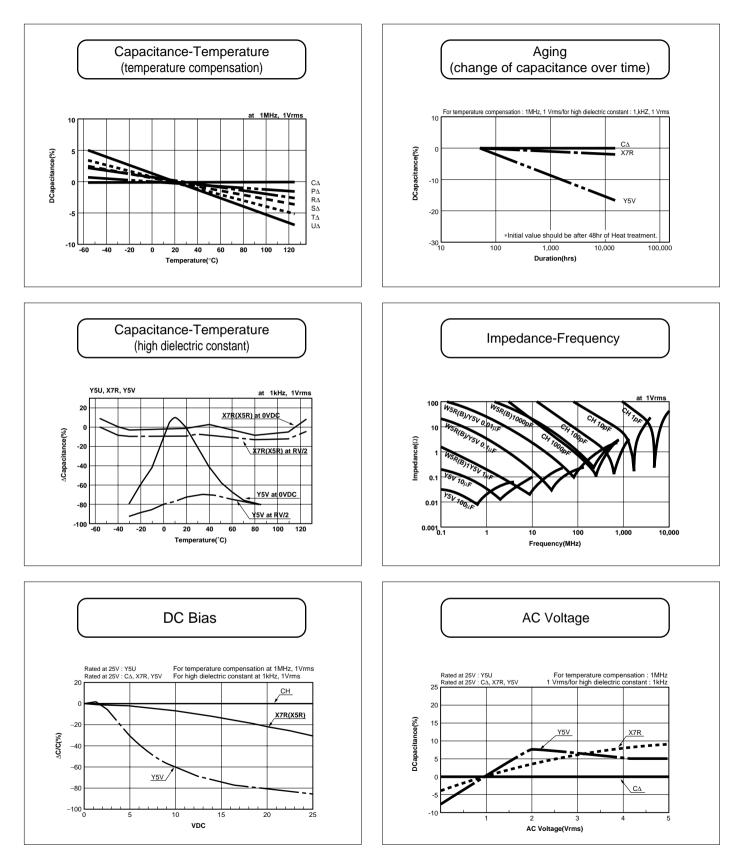
1.6±0.15

1kp(E12)

Siz	e (mm)	CN (02			CM05 (0402)			CM (06				CN (08				CM (12				CN (12		
	Voltage (VDC) citance (pF)	6.3	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
102 472	1000 2200 4700		А																			
103 473	10000 22000 47000	А		в	в	- В-				с												
104 474	100000 220000 470000							с	С			E	D E	E G				F				
105 475	1000000 2200000 4700000						С				G	G	G			F	F					Н
106	1000000 2200000 4700000														J	J			К	J	J	

Thickness and standard package quantity

2.0±0.2


2.5±0.2

1kp(E12) 0.5kp(E12) 0.5kp(E12)

2.8±0.2

Size	03	05	105	*105		21, 316, 32							
Thickness (mm)	Α	В	С	С	D	Ε	F	G	H		J	Κ	L
(1111)	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	1.15±0.1	1.25±0.1	1.4max	1.6max	1.6±0.15	2.0±0.2	2.5±0.2
Taping(180 dia reel)	15kp(P8)	10kp(P8)	4kp(P8)	8kp(P8)	4kp(P8)	4kp(P8)	3kp(E8)	3kp(E8)	3kp(E8)	2.5kp(E8)	2.5kp(E8)	2kp(E8)	1kp(E8)
Taping(330 dia reel)		50kp(P8)	10kp(P8)	20kp(P8)	10kp(P8)	10kp(P8)	10kp(E8)	10kp(E8)	10kp(E8)	5kp(E8)	5kp(E8)	5kp(E8)	
Size		43	, 55		Note : P8 = 8mm width paper tape E8 = 8mm width plastic tape								
Thickness	J	K		Μ	E12 = 12 mm width plastic tape								

* Carrier tape 2mm pitch from one capacitor to another.

Please verify individual characteristics at the design stage to ensure total suitability

Test conditions and Specification for Temperature Compensation type(C* to U* • SL characteristics)

Tes	t Items	Specification (C: nominal capacitance)		Tes	t Conditions			
Capacitance	e Value	Within tolerance	C≤1000)pF	1MHz±10%	0.5 to		
Q		C≥30pF: Q≥1000 C<30pF: Q≥400+20C	C>1000	· ·	1kHz±10%	5Vrms		
Insulation re	esistance (IR)(*6)	10,000MΩ or 500MΩ•μF min, whichever is less	Measured aft minute at nor	er the rat mal room	ed voltage is applie temperature and	ed for one humidity. (*4)		
Dielectric Resistance (*6)		No problem observed	(*1) Apply 3 t	imes of th	ne rated voltage fo	r 1 to 5 seconds		
Appearance		No problem observed	Microscop	e(10×n	nagnification)			
Termination	strength (*2)	No problem observed	Apply a sideward force of 500g(5N) (*7) to a PCB-mo sample.					
Bending str	ength (*2)	No mechanical damage at 1mm bent	Glass epoxy PCB (t=1.6mm); fulcrum Spacing: 90mm; for 10 seconds.					
Vibration test	Appearance	No significant change is detected.			ncy: 10 to 55(H	łz)		
1031	ΔC	Within tolerance		condit	ion: 10 \rightarrow 55 \rightarrow	10Hz/min		
	Q	C≥30pF: Q≥1000 C<30pF: Q≥400+20C		Sweeping condition: 10→55→10Hz/min In X, Y and Z directions: 2 hours each Total 6 hours				
Soldering	Appearance	No significant change is detected.		•	in 260°C±5°C	;		
heat resistance	ΔC	±2.5% or ±0.25pF max, whichever is larger.		in a ro	om at normal			
	Q	C≥30pF: Q≥1000 C<30pF: Q≥400+20C	and humidity; measure after 24± (Preheating Conditions)					
	IR (*6)	10,000MΩ or 500MΩ• μ F min, whichever is smaller	Order 1		mperature to 100°C	Time 2minutes		
	Withstand voltage (*6)	Resists without problem	2		0 to 200°C	2minutes 2minutes		
Solderability	y	Ni/Br termination: 90% min		onditio Ider 0.5Cu	n 235±5°C 245±5°C	2±0.5sec. 3±0.5sec.		
Temperature	Appearance	No significant change is detected.	(Cycle)					
cycle (*3)	ΔC	$\pm 2.5\%$ or $\pm 0.25pF$ max, whichever is larger.	Normal room temperature (3min) \rightarrow Lowest operation temperature (30min) \rightarrow					
	Q	C≥30pF: Q≥1000 C<30pF: Q≥400+20C		Normal room temperature $(3min) \rightarrow$ Highest operation temperature $(30min) \rightarrow$				
	IR (*6)	10,000M\Omega or 500MΩ•µF min, whichever is samller	After five of 24±2hours		(*3), measure a	after		
	Withstand voltage (*6)	Resists without problem	24_2110013	5.				
Humidity test (*5)	Appearance	No significant change is detected.			sample after			
	ΔC	\pm 7.5% or \pm 0.75pF max, whichever is larger.	and a rela	tive hu	midity of 90-9			
Q		C≥30pF: Q≥200 C<30pF: Q≥100+10C/3	for 500+24	4/—UNO	urs.			
	IR (*6)	500M or 25M $\Omega^{\bullet}\mu F$ min, whichever is smaller						
High- temperature Appearance		No significant change is detected.) twice of the r of 125±3°C fo			
with loading	ΔC	\pm 3% or \pm 0.3pF max, whichever is larger.	1000+48/-	-0hours	s, measure the			
	Q	C≥30pF: Q≥350 10pF≤C<30pF: Q≥275+5C/2 C<10pF: Q≥200+10C	after storir	ng 24±2	2hours.			
	IR (*6)	1,000MΩ or 50MΩ•µF min, whichever is smaller						

the rated voltage exceeds 630V.

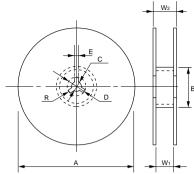
*2 Except CT series

Different specification for Nickel Barrier termination DN/DR series. (Alumina Substrate) *3

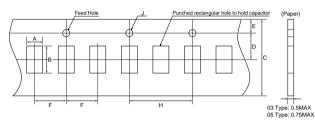
*4 Apply 500V for 1minite in case the rated voltage is 1000V or higher. *6 The charge and discharge current of the capacitor must not exceed 50mA.

*7 2N at 0201 Size

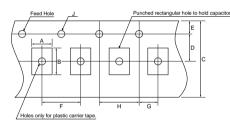
Test conditions and Specification for High Dielectric Type (X5R, X7R, Y5V)

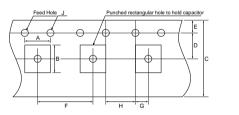

Test Items		Specific X7R/X5R	Y5V	Test Condition				
			150	Do previous treatment (*8, *14)				
Capacitance	e Value	Within tolerance		Capacitance Fire Vol				
tanδ (%)		2.5%max, 3.5%max (*2), 7.0%max (*12) 5.0%max (*3), 7.5%max (*17)	5.0%max, 7.0%max (*13) 9.0%max (*4), 12.5%max (*5)	C≤10µF 1kHz±10% 1.0±0.1Vrms C>10µF 120Hz±10% 0.5±0.1Vrms				
Insulation re	esistance (IR) (*15)	10,000MΩ or 500MΩ•μF min, wh	Measured after the rated voltage is applied for 2minutes at normal room temperature and humidity. (*10)					
Dielectric R	esistance (*15)	No problem observed		(*1) Apply 2.5 times of the rated voltage for 1 to 5 secon				
Appearance	•	No problem observed		Microscope(10×magnification)				
Termination	strength (*6)	No problem observed		Apply a sideward force of 500g(5N) (*16) to a PCB-mounted sample.				
Bending str	ength test (*6)	No problem observed at 1mm be	Glass epoxy PCB (t=1.6mm); fulcrum Spacing: 90mm; for 10 seconds.					
Vibration	Appearance	No significant change is detected	ł.	Vibration frequency: 10 to 55(Hz) Amplitude: 1.5mm				
test	ΔC	Within tolerance	Sweeping condition: $10 \rightarrow 55 \rightarrow 10$ Hz/min In X, Y and Z directions:					
	tanδ (%)	Satisfies the initial value.		2 hours each Total 6 hours				
Soldering heat	Appearance	No significant change is detected	1.	Do previous treatment (*8) Soak the sample in 260°C±5°C				
resistance	ΔC	Within ±7.5%	Within ±20%	solder for 10±0.5seconds and place in a room at normal temperature				
	tanδ (%)	Satisfies the initial value.		and humidity; measure after 48±4hours. (Preheating Conditions)				
IR (*15)		10,000MΩ or 500MΩ•μF min, wh	ichever is smaller	Order Temperature Time 1 80 to 100°C 2minutes				
	Withstand voltage (*15)	Resists without problem		2 150 to 200°C 2minutes				
Solderability	y	Ni/Br termination: 90% min		Soaking ConditionSn63 Solder235±5°C2±0.5sec.Sn-3Ag-0.5Cu245±5°C3±0.5sec.				
Temperature cycle (*7)	Appearance	No significant change is detected	Do previous treatment (*8) (Cycle)					
	ΔC	Within ±7.5%	Normal room temperature (3min) \rightarrow Lowest operation temperature (30min) \rightarrow					
	tanδ (%)	Satisfies the initial value.	Normal room temperature $(3min) \rightarrow$ Highest operation temperature $(30min) \rightarrow$					
	IR (*15)	10,000MΩ or 500MΩ•μF min, wh	ichever is smaller	After five cycles (*7), measure after 48±4hours.				
	Withstand voltage (*15)	Resists without problem						
Humidity test (*11)	Appearance	No significant change is detected	ł.	Do previous treatment (*9) After storing it at a temperature of				
	ΔC	Within ±12.5%	Within ±30%	$40^{\circ}C\pm2^{\circ}C$ and a relative humidity of 90-95% for 500+24/–0hours, measure				
	tanδ(%)	200% max of initial value	150% max of initial value	the sample after storing 48 ± 4 hours.				
	IR (*15)	500MΩ or 25MΩ•μF min, whiche	ver is smaller					
High- temperature	Appearance	No significant change is detected	ł.	Do previous treatment (*9) After applying twice (*18) of the rated				
with loading	ΔC	Within ±12.5%	Within ±30%	voltage at the highest operating temperatur				
tanõ(%)		200% max of initial value	150% max of initial value	for 1000+48/–0hours, measure the sample after storing 48±4hours.				
	IR (*15)	1,000MΩ or 50MΩ•μF min, which						
Use 1.2 times whe Apply to X5R 35V ty Apply to X5R16V/2 Apply to Y5V 16V t Apply to Y5V 6.3V/ Exclude CT series	n the rated voltage is 250V of n the rated voltage is 630V of ype, X7R 16V/25V type. 25V type, X7R/X7S 6.3V/10V type, CM32Y5V335 to 106 (2 /10V type. Apply 16% to CM with thickness of less than 0 tion for Nickel Barrier termin	or over. / type. 25V Type). 21Y5V106/CM316Y5V226.	*11 Except CF series. *12 Apply to X5R 10V type, X7S 4V t	V154 over, CM21Y5V105 over, 316Y5V155 over. 'rms for Y5V, C < 47μF type.				

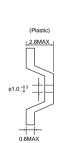
Use 1.5 times when the rated voltage is 250V or over. Use 1.2 times when the rated voltage is 630V or over.
 Apply to XSR 35V type, X7R 16V/25V type.
 Apply to XSR 16V/25V type, X7R 18V/25V type.
 Apply to XSR 16V/25V type, X7R/X7S 6.3V10V type.
 Apply to Y5V 6.3V10V type. Apply 16% to CM21Y5V106/CM316Y5V226.
 Exclude CT series with thickness of less than 0.66mm and CA series.
 Different Specification for Nickel Barrier termination DNDR series. (Alumina Substrate)
 Keep specimen at 150°C+0/-10°C for one hour, leave specimen at room ambient for 48±4 hours.
 Apply the same test condition for one hour, then leave the specimen at room ambient for 48±4 hours.


*16 2D at U2U1 Size
 *17 Apply to XSR 4V and 6.3V type.
 *18 Use 1.5times when the rated voltage is 4V/6.3V/10V/250V and 100V (32X7R474/43X7R105/55X7R105). Use 1.2times when the rated voltage is 630V or over.

Tape and Reel


• Reel

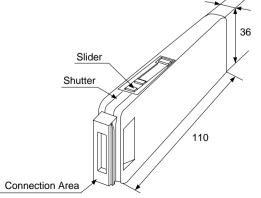

F=2mm(03, 05, 105 Type)



F=4mm(105, D11, D12, F12, F13, 21, 316, 32, 42, 52 Type)

F=8mm(43, 53, 55 Type)

(Plastic)


2.8MAX

φ1.0^{+0.2}

0.6MAX

(Paper)

Bulk Cassette (Unit : mm)

Reel (code : T)

(Unit : mm)

Code Reel	A	В	С	D	
7-inch Reel (CODE : T, H)	178±2.0	φ60min	13±0.5	21±0.8	
13-inch Reel (CODE : L, N)	330±2.0	φ100±1.0	15±0.5	21±0.0	
Code Reel	E	W 1	W2	R	
7-inch Reel (CODE : T, H)	2.0±0.5	10.0±1.5	16.5max	1.0	
13-inch Reel	2.0±0.5	9.5±1.0	TO.SMAX	1.0	

 CODE: L, N)
 3.5±1.0

 *Carrier tape width 8mm. For size 42(1808) or over, Tape width 12mm and W1 : 14±1.5, W2 : 18.4mm max

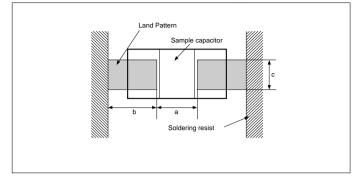
Carrier Tape

(Unit : mm)

Туре	А	В	F
03 (0.6×0.3)	0.37±0.03	0.67±0.03	2.0±0.05
05 (1.0×0.5)	0.65±0.1	1.15±0.1	2.0±0.05
105 (1.6×0.8)	1.0±0.2	1.8±0.2	4.0±0.1
D11 (1.37×1.0)	1.15±0.1	1.55±0.1	4.0±0.1
D12 (1.25×2.0)	1.5±0.2	2.3±0.2	4.0±0.1
F12 (1.25×2.0)	1.5±0.2	2.3±0.2	4.0±0.1
F13 (1.6×3.2)	2.0±0.2	3.6±0.2	4.0±0.1
21 (2.0×1.25)	1.5±0.2	2.3±0.2	4.0±0.1
316 (3.2×1.6)	2.0±0.2	3.6±0.2	4.0±0.1
32 (3.2×2.5)	2.9±0.2	3.6±0.2	4.0±0.1
42 (4.5×2.0)	2.4±0.2	4.9±0.2	4.0±0.1
43 (4.5×3.2)	3.6±0.2	4.9±0.2	8.0±0.1
52 (5.7×2.0)	2.4±0.2	6.0±0.2	4.0±0.1
53 (5.7×2.8)	3.2±0.2	6.0±0.2	8.0±0.1
55 (5.7×5.0)	5.3±0.2	6.0±0.2	8.0±0.1

(Unit : mm)

F	Carrier Tape	с	D	Е	G	н	J
2.0 ±0.05	8mm Paper	8.0	3.5				
4.0	· ·	±0.3	±0.05	1.75	2.0	4.0	15
±0.1	8mm Plastic			1.75 ±0.1	±0.05	4.0 ±0.1	1.5 +0.1/–0
	12mm	12.0	5.5				
8.0 ±0.1	Plastic	±0.3	±0.05				


Circuit Design

- 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc.
- 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability. Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors.
- 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C.
- 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage.
 In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage.
 Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame.
- 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer. In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate.
- 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage. Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation.
- Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
 In addition, it is a common piezo phenomenon of high dielectric products to have some Voltage due to vibration or to have noise due to Voltage change. Please contact sales in such case.
- 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately.

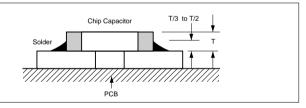
Storage

- 1. If the component is stored in minimal packaging (a heat-sealed or chuck-type plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator.
- 2. Keep storage place temperature +5 to +35 degree C, humidity 45 to 70% RH.
- 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected.
- 4. Precautions 1)-3) apply to chip capacitors packaged in carrier tapes and bulk cases.
- 5. The solderability is assured for 12 months from our shipping date (six months for silver palladium) if the above storage precautions are followed.
- 6. Chip capacitors may crack if exposed to hydrogen (H₂) gas while sealed or if coated with silicon, which generates hydrogen gas.

Dimensions for recommended typical land

When mounting the capacitor to the substrate, it is important to consider carefully that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it is mounted.

- a) The greater the amount of solder, the greater the stress to the elements. As this may cause the substrate to break or crack, it is important to establish the appropriate dimensions with regard to the amount of solder when designing the land of the substrate.
- b) In the situation where two or more devices are mounted onto a common land, separate the device into exclusive pads by using soldering resist


Standard				(Unit : mm)
Size	L×W	а	b	с
03	0.6×0.3	0.20 to 0.30	0.25 to 0.35	0.30 to 0.40
05	1.0×0.5	0.30 to 0.50	0.35 to 0.45	0.40 to 0.60
105	1.6×0.8	0.70 to 1.00	0.80 to 1.00	0.60 to 0.80
21	2.0×1.25	1.00 to 1.30	1.00 to 1.20	0.80 to 1.10
316	3.2×1.6	2.10 to 2.50	1.10 to 1.30	1.00 to 1.30
32	3.2×2.5	2.10 to 2.50	1.10 to 1.30	1.90 to 2.30
42	4.5×2.0	2.50 to 3.20	1.80 to 2.30	1.50 to 1.80
43	4.5×3.2	2.50 to 3.20	1.80 to 2.30	2.60 to 3.00
52	5.7×2.0	4.20 to 4.70	2.00 to 2.50	1.50 to 1.80
53	5.7×2.8	4.20 to 4.70	2.00 to 2.50	2.20 to 2.60
55	5.7×5.0	4.20 to 4.70	2.00 to 2.50	4.20 to 4.70

* CA series : Please refer Page 19.

DN/DR Automotive Series

(Unit : mm) L×W Size b а С 105 1.6×0.8 0.60 to 0.90 0.80 to 1.00 0.70 to 1.00 21 2.0×1.25 0.90 to 1.20 0.80 to 1.20 0.90 to 1.40 316 3.2×1.6 1.40 to 1.90 1.00 to 1.30 1.30 to 1.80

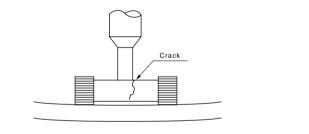
Ideal Solder Thickness

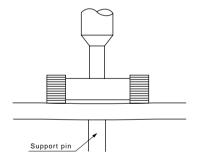
Typical mounting problems

ltem	Not recommended example	Recommended example/Separated by solder resist
Multiple parts mount		Solder resist
Mount with leaded parts	Leaded parts	Solder resist Leaded parts
Wire soldering after mounting	Soldering iron Wire	Solder resist
Overview	Solder resist	Solder resist

Mounting Design

The chip could crack if the PCB warps during processing after the chip has been soldered.


Recommended chip position on PCB to minimize stress from PCB warpage



Actual Mounting

1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking.

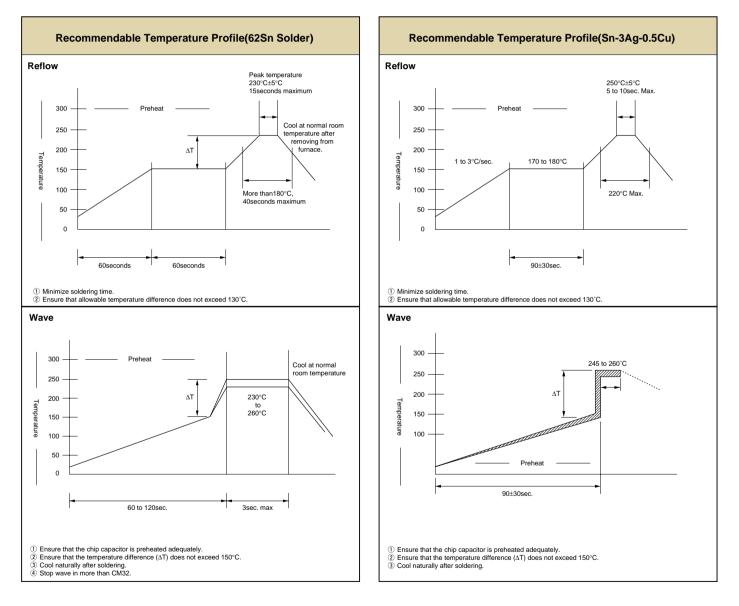
- 2) During mounting, set the nozzle pressure to a static load of 100 to 300 gf.
- 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture.

- 4) When the positioning hook begins to wear, unstable mechanical shock may be applied to the chip capacitor, resulting in cracking.
- 5) To reduce the possibility of chipping and cracks, minimize vibration to chips stored in a bulk case.
- 6) The discharge pressure must be adjusted to the part size. Verify the pressure during setup to avoid fracturing or cracking the chips capacitors.

Resin Mold

- 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin.
- 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin.
- 3) Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.

Multilayer Ceramic Chip Capacitors Surface Mounting Information


Soldering Method

- 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 130 degree Celsius.
- 2) The product size 1.0×0.5mm to 3.2×1.6mm can be used in reflow and wave soldering, and the product size of over 3.2×2.5mm, 0.6×0.3mm, and capacitor arrays can be used in reflow.

Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution.

3) Please see our recommended soldering conditions.

Please contact us if you use lead free solder because the peak temperature of lead free is different from non-lead free.

Sodering iron

- 1) Temperature of iron chip
- 2) Wattage
- 3) Tip shape of soldering iron
- 4) Soldering Time
- 350°C max 30W max ¢3.0mm max 3sec. max
- 5) Cautions
 - a) Pre-heating is necessary Rapid heating must be avoided.
 - Delta T≤130°C.
 - b) Avoid direct touching to capacitors.
 - c) Avoid rapid cooling after soldering. Natural cooling is recommended.